On modeling the response of the synovial fluid: Unsteady flow of a shear-thinning, chemically-reacting fluid mixture

نویسندگان

  • Craig Bridges
  • Satish Karra
  • K. R. Rajagopal
چکیده

We study the flow of a shear-thinning, chemically-reacting fluid that could be used to model the flow of the synovial fluid. The actual geometry where the flow of the synovial fluid takes place is very complicated, and therefore the governing equations are not amenable to simple mathematical analysis. In order to understand the response of the model, we choose to study the flow in a simple geometry. While the flow domain is not a geometry relevant to the flow of the synovial fluid in the human body it yet provides a flow which can be used to assess the efficacy of different models that have been proposed to describe synovial fluids. We study the flow in the annular region between two cylinders, one of which is undergoing unsteady oscillations about their common axis, in order to understand the quintessential behavioral characteristics of the synovial fluid. We use the three models suggested by Hron et al. [ J. Hron, J. Málek, P. Pustějovská, K. R. Rajagopal, On concentration dependent shear-thinning behavior in modeling of synovial fluid flow, Adv. in Tribol.(In Press).] to study the problem, by appealing to a semi-inverse method. The assumed structure for the velocity field automatically satisfies the constraint of incompressibility, and the balance of linear momentum is solved together with a convection-diffusion equation. The results are compared to those associated with the Newtonian model. We also study the case in which an external pressure gradient is applied along the axis of the cylindrical annulus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsteady-state Computational Fluid Dynamics Modeling of Hydrogen Separation from H2/N2 Mixture

3D modeling of Pd/α-Al2O3 hollow fiber membrane by using computational fluid dynamic for hydrogen separation from H2/N2 mixture was considered in steady and unsteady states by using the concept of characteristic time. Characteristic time concept could help us to design and calculate surface to volume ratio and membrane thickness, and adjust the feed conditions. The contribution of resistance be...

متن کامل

Effects of Thermal Diffusion and Radiation on Magnetohydrodynamic (MHD) Chemically Reacting Fluid Flow Past a Vertical Plate in a Slip Flow Regime

An analysis has been conceded to study the effects of Soret and thermal radiation effects on the magnetohydrodynamic convective flow of a viscous, incompressible, electrically conducting fluid with heat and mass transfer over a plate with time-dependent suction velocity in a slip flow regime in the presence of first-order chemical reaction. The slip conditions at the boundaries for the governin...

متن کامل

A Computational Study about the Effect of Turbines Pitched Blade Attack Angle on the Power Consumption of a Stirred Tank

In this study, the stirring mechanism of shear-thinning fluids benefiting from four blades in turbulent flow is considered. The fluid is studied inside a stirred cylindrical tank with a flat bottom. The height of fluid is equal to the cylinder’s diameter and the impeller is positioned centrally. A CFD simulation has been carried out and three-dimensional turbulent flow is numerically analyzed u...

متن کامل

Effect of Exponentially Variable Viscosity and Permeability on Blasius Flow of Carreau Nano Fluid over an Electromagnetic Plate through a Porous Medium

The present investigation draws scholars' attention to the effect of exponential variable viscosity modeled by Vogel and variable permeability on stagnation point flow of Carreau Nanofluid over an electromagnetic plate through a porous medium. Brownian motion and thermophoretic diffusion mechanism are taken into consideration. An efficient fourth-order RK method along with shooting technique ar...

متن کامل

Unsteady MHD Couette-Hartmann flow through a porous medium bounded by porous plates with Hall current, ion-slip and Coriolis ‎effects

Effects of Hall current, ion-slip and Coriolis force on unsteady MHD Couette-Hartmann flow of a viscous incompressible electrically conducting fluid through a porous medium bounded by porous plates in the presence of a uniform transverse magnetic field which is either fixed relative to the fluid or to the moving porous plate is investigated using Laplace transform technique. The expressions for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers & Mathematics with Applications

دوره 60  شماره 

صفحات  -

تاریخ انتشار 2010